Genetic variation & local climate adaptation in grassland species: Implications for seed sourcing

April Goebl Ph.D. – Denver Botanic Gardens National Conference on Ecosystem Restoration April 16th, 2024 Denver Botanic Gardens -Chatfield Farms

Research on seed sourcing for grassland restoration

Evolution & within-species diversity mean not all seed is genetically appropriate

Neutral evolutionary forces e.g. genetic drift

Non-neutral evolutionary forces e.g. natural selection (local adaptation)

wikimedia.org

BLM Seeds of Success conserves natural genetic diversity

Source: BLM.gov

Natural genetic diversity is a benefit & a challenge

Source: BLM.gov

Talk outline

1. Local adaptation to climate in blue grama and rabbitbrush

2. Warming experiment with Front Range penstemon

3. Population genomic study of fringed sage

METHODS

Species	Sample size	Populations	Data collection
Artemisia frigida (fringed sage)	2183	11	phenology,
Ericameria nauseosa (rubber rabbitbrush)	1124	20	survival, size,
Penstemon virens (Front Range penstemon)	1106	6	reproduction,
<i>Bouteloua gracilis</i> (blue grama)	1135	21	leaf traits

Ericameria nauseosa

Penstemon virens

Artemisia frigida

Bouteloua gracilis

Germination in greenhouse

Transplant to field

Bouteloua gracilis (blue grama)

Ericameria nauseosa (rubber rabbitbrush)

Bouteloua gracilis (blue grama)

Ericameria nauseosa (Rubber rabbitbrush)

Are these species locally adapted to climate?

Bouteloua gracilis (blue grama)

Ericameria nauseosa (rubber rabbitbrush)

plants.usda.gov/home/plant

High survival & flowering rates

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

semi-arid, warm

arid, v.warm

semi-arid, v.warm

Relatively high survival & flowering rates

RESULTS - B. gracilis

- se<u>mi-humid, co</u>ol
- semi-humid, warm
- semi-humid, v.warm
- semi-arid, cool
- semi-arid, warm
- semi-arid, v.warm
- semi-arid, hot
- semi-arid, v.hot
- arid, cold

RESULTS – E. nauseosa

• arid, v.warm

FLOWERING PHENOLOGY

RESULTS - B. gracilis

RESULTS – E. nauseosa

Timing of flowering can vary widely between populations

Bioclimatic variables

- BIO1 = Annual Mean Temperature
- BIO2 = Mean Diurnal Range
- BIO3 = Isothermality
- BIO4 = Temperature Seasonality
- BIO5 = Max Temperature of Warmest Month
- BIO6 = Min Temperature of Coldest Month
- BIO7 = Temperature Annual Range
- BIO8 = Mean Temperature of Wettest Quarter
- BIO9 = Mean Temperature of Driest Quarter
- BIO10 = Mean Temperature of Warmest Quarter
- BIO11 = Mean Temperature of Coldest Quarter
- BIO12 = Annual Precipitation
- BIO13 = Precipitation of Wettest Month
- BIO14 = Precipitation of Driest Month
- **BIO15** = Precipitation Seasonality
- BIO16 = Precipitation of Wettest Quarter
- BIO17 = Precipitation of Driest Quarter
- BIO18 = Precipitation of Warmest Quarter
- BIO19 = Precipitation of Coldest Quarter

Example regression model of trait against bioclim variables

RESULTS - B. gracilis

- semi-humid, cool
- semi-humid, warm
- •
- semi-arid, warm .
- semi-arid, v.warm •
- semi-arid, hot .
- semi-arid, v.hot .
- arid, cold .

semi-humid, v.warm semi-arid, cool

BIO11 - Mean temp of coldest quarter (°C)

<u>RESULTS – E. nauseosa</u>

RESULTS – E. nauseosa

Plants adapted to mild winters flower later

Penstemon virens (Front Range penstemon)

How does penstemon respond to warming?

Penstemon virens (Front Range penstemon)

Wyoming

Mountains Font Ran North Platte Cheyenne Salt Lake City ont Range Rocky Mountai Denver Utah Colorado ins Arkansas

CKY

Idaho Falls

plants.usda.gov/home/plantProfile?symbol=PEVI3

Sample size: 1106 Populations: 6

P.WY.1
P.WY.2
P.CO.1
P.CO.2
P.CO.3
P.CO.4

Warming resulted in higher flowering rates

■ Warm ▼ Cool

Warming resulted in earlier flowering in most populations

Next steps: germination & emergence field experiment to look at warming during early life stages

Artemisia frigida (fringed sage)

Artemisia frigida – Population genomics

0.0

0.1

-0.1

 \bullet

Do seed sources differ

• Can we identify adaptive

genetic variation in key

genetically?

traits?

Artemisia frigida (fringed sage)

- ARFR-WY050-49-FREMONT-12
- ARFR-WY050-151-FREMONT-16
- ARFR-WY040-71-10
- ARFR-CO932-294-11
- ARFR-UT080-109-UINTAH-12
- ARFR-CO932-316-JEFFERSON-12
- ARFR-CO932-314-JEFFERSON-12
- ARFR-WY930-44-LASANIMAS-13
- ARFR-NM930N-66-11
- ARFR-AZ930-422-NAVAJO-18
- ARFR-AZ930-423-NAVAJO-18

(6 seed zones)

https://plants.usda.gov/home/plantProfile?symbol=ARFR4

Sample size: 2183 Populations: 11

RESULTS – A. frigida

Gillette Alyson Emery -0.2 . -0.1 PC2 (2.14%) Cheyenne 0.0-Fort Collins Greeley Longmont 0.1 0.2 -Colorado Springs Pueblo -0.4 -0.2 0.0 PC1 (2.60%) NO

RESULTS – A. frigida

Alyson Emery

Population

- ARFR-WY050-49-FREMONT-12
- ARFR-WY050-151-FREMONT-16
- ARFR-WY040-71-10
- ARFR-CO932-294-11
- ARFR-UT080-109-UINTAH-12
- ARFR-CO932-316-JEFFERSON-12
- ARFR-CO932-314-JEFFERSON-12
- ARFR-WY930-44-LASANIMAS-13
- ARFR-NM930N-66-11
- ARFR-AZ930-422-NAVAJO-18
- ARFR-AZ930-423-NAVAJO-18

Plant size & SNPs map onto source location

Summary

1. Blue grama & Rubber rabbitbrush

- Trait variation between populations
- Phenology has high between population variation and low within population variation
- Phenology correlates with winter temperature

2. Front Range penstemon flowering responds to warming

3. Fringed sage shows variation in plant size and SNPs that maps onto geographic source site location

Next Steps

Data from additional traits & life stages

DNA sequence data of common garden plants

Test local adaptation hypotheses

Acknowledgments

Land acknowledgment This research was conducted on land of the Núu-aghatʉvʉ-pʉ (Ute), Tséstho'e (Cheyenne)

- Larry Vickerman
- Brooke Palmer
- Mike Bone
- Emily McAuley
- Erik Geyer
- Christina Alba
- Dan Doak
- Nolan Kane
- Rebecca Hufft
- SNPsaurus

- Laura Green
- Tiffany Gentry
- Michelle Williams
- Adriana Jacobi
- Theresa Melhem
- Michelle Deprenger-Levin
- Jacob Stanley
- Alyson Emery
- Erica Larson
 - Gardens Research & Conservation Dept

Núu-agha-

DENVER BOTANIC GARBENS

Contact: april.goebl@botanicgardens.org